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Mie and Debye scattering in dusty plasmas
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~Received 23 June 1999!

We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that
includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accom-
plished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud,
which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we
treat the Debye-Mie field as a whole and study its properties. The main results of this study are~1! the Mie
~Debye! field dominates at small~large! wavelengths and in the Rayleigh limit the Debye field is constant;~2!
the total cross section has an interference term between the Debye and Mie fields, important in some regimes;
~3! this term is negative for negative charge of the grain, implying a total cross section smaller than previously
thought;~4! a method is proposed to determine the charge of the grain~divided by a certain suppression factor!
and the Debye length of the plasma;~5! a correction to the dispersion relation of an electromagnetic wave
propagating in a plasma is derived.

PACS number~s!: 52.25.Zb, 52.40.Db, 42.68.Mj, 94.10.Gb
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I. INTRODUCTION

In this work we study the scattering of an electromagne
wave by the system composed of a charged dust grain
sumed spherical, and the surrounding screening De
sphere. This problem arises in the context of the study
dusty plasmas, but is also related closely to the theory of
scattering. Therefore, this is a classical electromagne
problem applied to the environment of laboratory as well
natural plasmas, such as ionospheric or space plasmas.

The study of dusty plasmas has been growing in imp
tance in the last years@1–12#. Roughly, a dusty plasma i
composed of dust particulates surrounded by an electron
plasma. Due to the electron and ion currents, photoemis
and secondary emission, the dusts become charged u
hundreds or thousands of elementary charges@5#. The dusty
plasmas are present almost everywhere: interstellar clo
circumstellar and protoplanetary accretion disks, plane
rings, comets, planetary magnetospheres@4,6,7#, and in labo-
ratory environments, such as plasma processing device@8#
or, more recently, in the promising new field of dusty cry
tals @9,10#.

Mie theory is a classical area of optical physics@13,14#. It
describes the scattering of electromagnetic waves b
spherical particle and it has been successfully applied
vast range of problems, e.g., in the study of atmosph
aerosols or rainfall measurements@15#.

Mie theory is also used in a variety of plasma enviro
ments, for example, in the study of noctilucent clouds@16#,
for sizing contaminants in plasma processing chamb
@11,12# or in the study of scattered light by intergalactic du
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@1,17#. However, the effect of the plasma is not taken in
account in these applications. In this paper we show so
situations where scattering by the plasma can be as impo
as Mie scattering.

The physical picture of our problem is simple: the high
charged dust is screened by the Debye cloud that fo
around it. This cloud is a heterogeneity in the electron a
ion average densities and thus it will scatter the incid
radiation. Therefore, there is the simultaneous scattering
the spherical dust@Mie scattering~MS!#, and by the Debye
cloud @Debye scattering,~DS!#.

The importance of the DS can be easily understood c
sidering a limiting case. If the incident electromagnetic
diation has wavelengthl@lD ~where lD is the Debye
length!, the charges inside the Debye sphere scatter radia
coherently and thus the scattering cross sectionsD for this
process is strongly enhanced relative to the cross section
single electron,s0 ~the Thomson cross section!, being ap-
proximately given byZ2s0, whereZ;104,105 is the charge
number of the grain.

This argument was first presented by Tsytovichet al. @18#
and Binghamet al. @19#, who have first studied the problem
of DS starting from the Vlasov equation~including an equi-
librium distribution function for the electrons around th
dust! and Fourier transforming the wave equation. La H
@20# developed the theory for the study of radar bckscatter
from dusty plasmas. Following the same lines Vladimir
@21# included the effect of dust charge fluctuations@22# in
the process, but using essentially the same methods.
found a dependence of DS on the parameters character
the dust charging.

In this work we treat the problem of DS following
method closely related to the method used to study MS,
pressing the Debye field in a Mie-like series of spheri
vector wave functions@23,24#. The basic idea is to solve th
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PRE 62 1191MIE AND DEBYE SCATTERING IN DUSTY PLASMAS
wave equation with the aid of the Dyadic Green Funct
@25,24# ~DGF!, instead of going to thek space. The DGF is
expressed in a series of spherical vector wave functions,
thus the Debye field is determined in a similar form.

The advantages of this approach are the following: eas
the calculations of cross section, irradiances, and polar
tion; direct physical interpretation, in parallel to MS; pos
bility of describing the Mie-Debye process as a continuu
being dominated by MS~DS! in the short~long! wavelength
regime, and having an intermediate regime where the De
field and the Mie field interfere to produce a mixed cro
section:sTOT5sM1sD1sMD . Furthermore, we shall se
that in the forward and backward directions the expans
series for DS can be summed exactly, giving as a bonu
method for determining the charge~divided by a certain cor-
rection factor! and the Debye length. Finally, the relatio
between forward amplitude scattering and dielectric cons
allows the determination of a correction to the dispers
relation of a electromagnetic wave propagating in a du
plasma.

Finally, it should be stressed that we treat a static pr
lem, that is, the Debye cloud is assumed to be a static
turbation around the charged sphere. Also, we treat ma
the problem of one scatterer. However, if the grains are
enough apart so that their interaction is negligible, if they
randomly distributed, and if they have all the same rad
then we can assume that the total irradiance is the sum
irradiances.

II. DESCRIPTION AND FORMAL SOLUTION
TO THE PROBLEM

A. Equation for the Debye field derived from Maxwell
and fluid equations for the plasma

Consider a plasma consisting of electrons, ions, and
grains, positively or negatively charged. In equilibrium, t
spatially averaged densities of these components are re
by

neq,e2neq,i1Znd50, ~2.1!

where neq,e and neq,i are the electron and ion equilibrium
average densities~we have assumed unitary charge for t
ions!, nd is the density of grains, andZ the number of
charges attached to it, which can be positive or negative.
Debye shielding cloud formed around the grains represen
~stationary! local perturbation in the electron and ion me
densities, which we will callñe and ñi . Thus, the picture of
the plasma that we are considering in this work is that o
uniform plasma with bumps or depressions in the mean e
tron and ion densities around the position of the grains. C
sider now that a plane electromagnetic wave (E0 ,B0) propa-
gates through the plasma. We assume that only the resp
of the electrons to the incident wave is significant, beca
the ions are much heavier. The incident electromagnetic fi
will be scattered by the plasma local heterogeneities, tha
to say, by the Debye clouds, originating a scattered fi
(Es ,Bs).

The Maxwell and fluid equations may be combined
give the equation for the scattered field@26#. The transverse
nd
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part of the scattered field,ET , satisfies@a dependence o
exp(2ivt) was assumed#

¹3¹3ET2k2ET5 im0vJT , ~2.2!

where k5vAe(v)/c is the wave number entering in th
plasma dispersion equation for transverse waves,e(v)51
2vpe

2 /v2 being the dielectric constant of the plasma (me is
the electron mass!, v25vpe

2 1k2c2, andJT is the transverse
part of the nonlinear current

J5
ie2

mv
ñE0 , ~2.3!

arising from the nonlinear interaction between the incid
field and the Debye density perturbation. Equation~2.2! is
general, whereas~2.3! is particular to a simple cold electro
model. Note thatvpe is defined from the equilibrium densit
neq,e , and does not take into account the effect of the den
fluctuations. This is not an approximation; the fluctuati
density effects are described through the nonlinear curr
not by the plasma frequency.

The ¹•E Maxwell equation leads to the equation for th
longitudinal scattered field,EL :

EL52
i

e0e~v!v
JL , ~2.4!

with JL the longitudinal part ofJ.
Equations~2.2! and~2.4! constitute the basic equations o

our problem. To find the scattered transverse field we nee
solve Eq. ~2.2! using the technique of the Dyadic Gree
functions~DGFs!, with the appropriate boundary condition

B. The transverse scattered field in terms
of the Dyadic Green function of the first kind

Following Tai @25# the DGF for~2.2! satisfies

¹3¹3 Ḡ̄~r ,r 8!2k2Ḡ̄~r ,r 8!5 Ī̄ d~r2r 8!. ~2.5!

The fieldET can thus be obtained as

ET~r !5 ivm0E
V8

JT~r 8!• Ḡ̄~r 8,r !dV8

1 R
S8

$@ ivm0Hs~r 8!#•@ n̂83 Ḡ̄~r 8,r !#

2@ n̂83ET~r 8!#•¹83 Ḡ̄~r 8,r !%dS8, ~2.6!

where V8 is the entire space excluding the sphere. Fo
conducting spheren̂83ET(r 8)50 in S8 and if the DGF sat-
isfies the Dirichlet boundary condition~DGF of the first

kind! n̂83 Ḡ̄(r 8,r )50 at the surface of the sphere, then t
transverse scattered field is simply

ET~r !5 ivm0E
V8

Ḡ̄~r ,r 8!•JT~r 8!dV8. ~2.7!

This result shows that for a conducting particle the scatte
field does not depend on the surface charge. In the case
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1192 PRE 62R. GUERRA AND J. T. MENDONC¸ A
dielectric or imperfectly conducting sphere the Debye fi
will have a contribution from the interior boundary of th
volume V8, that is, from the surface of the dust. The fie
scattered by the bulk volume will induce a field on the s
face of the grain, and this induced field will contribute to t
total scattered field. However, iflD@a, we expect that the
effect of the surface is negligible compared to the effect
the volume. Therefore, even in the case of a dielectric
imperfectly conducting sphere we still adopt~2.7! to calcu-
late the scattered field.

The appropriate DGF for our problem is
d
e

in

ra

er

ge

ith
-

f
r

Ḡ̄~r ,r 8!5 Ḡ̄0~r ,r 8!1 Ḡ̄s~r ,r 8!, ~2.8!

where Ḡ̄0(r ,r 8) is the free space DGF andḠ̄s(r ,r 8) is the
scattered DGF. Thus, the free DGF generates what we
call the primary Debye field, which is the field directly rad
ated by the Debye cloud, and the scattered DGF gener
the secondary Debye field, which is the primary field sc
tered by the surface of the sphere. We can describe it
‘‘first Debye and then a Mie field.’’ Obviously, the second
ary Debye field is always smaller than both Mie and Deb
primary fields and we neglect it in a first approximation.

The free space DGF is given by
Ḡ̄0~r ,r 8!52
1

k2
r̂ r d̂~r2r 8!1

ik

4p (
s,m,n

CmnH Msmn
(1) ~k,r !Msmn~k,r 8!1Nsmn

(1) ~k,r !Nsmn~k,r 8!, r .r 8

Msmn~k,r !Msmn
(1) ~k,r 8!1Nsmn~k,r !Nsmn

(1) ~k,r 8!, r ,r 8
~2.9!
n-
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-

where the functionsMsmn(k,r ) and Nsmn(k,r ) ~with s
5e,o an index for parity andm,n integers! are transverse
solutions of the equation¹3¹3F2k2F50. The superscript
(1) is assigned to theM andN functions if they include in its
expression the spherical Hankel function of the first kin
hn(kr), and no superscript is assigned if they are defin
from the Bessel function of the first kind,j n(kr). Its explicit
form is

Msmn~k,r !5¹3@csmn~k,r !r # ~2.10!

Nsmn~k,r !5
1

k
¹3¹3@csmn~k,r !r #, ~2.11!

with csmn(k,r ) the well known scalar solutions of¹2c
1k2c50: csmn(k,r )5zn(kr)Pn

m(cosu)f(mf), with zn a
spherical function~Bessel or Hankel!, Pn

m(cosu) an associ-
ated Legendre function andf 5cos(sin) fors5e(o). Finally,
the coefficient of the expansion isCmn5(22d0)(2n
11)(n2m)!/n(n11)(n1m)!.

Besides the transverse vector solutionsM andN we shall
need the longitudinal solutionL :

Lsmn~k,r !5
1

k
¹csmn~k,r !. ~2.12!

III. CALCULATION OF THE DEBYE FIELD

A. Expansion of the current in the vectors M, N, and L

The use of~2.7! requires that the current is expressed
the basis constituted by the vectorsM , N and L . With this
expansion it is a trivial matter to perform the volume integ
by the use of the orthogonal relations~A7! of Appendix A.
We begin by making an explicit choice for the density p
turbation and thus for the current.

For the Debye electrostatic potential around the char
sphere, f, we use the standard formulaf(r )
5(Ze/4pe0r )exp@2(r2a)/lD#, whereZ is the number of el-
ementary charges attached to the grain and can be e
,
d

l

-

d

er

positive or negative. More realistic and complicated pote
tials are available in the literature~Whipple @5#! but, essen-
tially, they are very similar to the simple Debye potenti
Furthermore, the latter has great advantage for analyt
work. The electron density is given byne(r )5neq,e1ñ
5neq,eexp@ef(r)/kbTe#.neq,e@11ef(r)/kBTe#, where we have
assumed thatef(r )/kBTe!1. If the incident field is given
by

E05E0ei (kz2vt)x̂, ~3.1!

then, by use of~2.3! we obtain for the current (e2 ivt

omitted!

J~r !5J
e2r /lD

r
eikzu~r 2a!x̂, J5 i

e2E0

4pm

Zea/lD

vlDe
2

,

~3.2!

whereu(r 2a) is the unit step function centered atr 5a ~51
if r .a and50 if r<a), introduced to take into account th
obvious fact that the electron plasma current only exists o
side the sphere. Note thatJ depends on the plasma and th
incident wave parameters.

Now we make an eigenfunction expansion of the curre

J~r !5J
e2r /lD

r
eikzu~r 2a!x̂

5E
0

`

dh (
s,m,n

@asmn~h!Msmn~h,r !

1bsmn~h!Nsmn~h,r !1csmn~h!Lsmn~h,r !#.

~3.3!

To determine the coefficients of the decomposition we m
tiply successively both sides of~3.3! by M , N, and
Ls8m8n8(h8,r ), integrate inr and use the orthogonality rela
tions ~A7! of the Appendix. For theb coefficients, for ex-
ample, we obtain
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PRE 62 1193MIE AND DEBYE SCATTERING IN DUSTY PLASMAS
bsmn~h!5J
h2Cmn

2p2
x̂•E

a

`

dr re2r /lDeE dVeikzNsmn~h,r !,

~3.4!

where r5(r ,u,f) and dV5sinududf; we are using the
standard spherical coordinates,u being the angle betweenr
and thez axis ~parallel tok). To perform the angular integra
we decomposeNsmn(h,r ) in the vector spherical harmonic
@24#, Pmn

s (u,f), Bmn
s (u,f), and Cmn

s (u,f), according to
~A3! of the Appendix. Then, we use the fact that

E dVeikzPmn
s ~u,f!54p i n21Lsmn~k,u50,v !

and

E dVeikzBmn
s ~u,f!54p i n21Nsmn~k,u50,v !/An~n11!,

where (k,u50,v) are the angular coordinates of the vec
k5kẑ. Splitting again Nsmn(k,u50,v) and Lsmn(k,u
50,v) in its vector harmonic components, usingPmn

s (u

50,v)5 ẑdsedm0 , Bmn
e (u50,v)52(1/2)An(n11)x̂dm1 ,

Bmn
o (u50,v)52(1/2)An(n11)ŷdm1 and the recurrence re

lations for the spherical Bessel functions, finally one obta
the expression for theb coefficients:

bsmn~h!5dsedm1J
i n11

p

2~2n11!

n~n11!
h2I 2

n~h,k!, ~3.5!

with

I 2
n~h,k!5

1

2n11Ea

`

drre2r /lD@~n11! j n21~hr ! j n21~kr !

1n jn11~hr ! j n11~kr !#. ~3.6!

Following similar steps one obtains, for thea and c coeffi-
cients,

asmn~h!5dsodm1J
i n12

p

2~2n11!

n~n11!
h2I 1

n~h,k!, ~3.7!

csmn~h!5dsedm1J
i n11

p
2h2I 3

n~h,k!, ~3.8!

with

I 1
n~h,k!5E

a

`

drre2r /lD j n~hr ! j n~kr !, ~3.9!

I 3
n~h,k!5E

a

`

drre2r /lD@ j n21~hr ! j n21~kr !

2 j n11~hr ! j n11~kr !#. ~3.10!

B. The transverse Debye field

Now that we have the current term decomposed in
vectorsM , N andL , as stated by Eq.~3.3!, we can go back

to ~2.7! and perform the integral*V8Ḡ̄0(r ,r 8)•JT(r 8)dV8 us-
r

s

e

ing the orthogonality relations for these vectors. The integ
tion can be performed over the entire space because the
rent vanishes forr ,a. The orthogonality relations produc
the factord(h2k) to be used under theh integration in~3.3!.
Because we are interested in the field far away from
sphere, we can assume that the point of observation, loc
at r , satisfiesr .r 8, wherer 8 is a source point. Therefore w
take the upper branch of~2.9! and neglect thed function of
this expression. The final result is~we add a superscriptD,
for Debye!

ET
D~r !5J

m0Ae~v!

c
v2(

n

~2n11!i n

n~n11!

3@ I 1
n~k!Mo1n

(1) ~k,r !2 i I 2
n~k!Ne1n

(1) ~k,r !#.

~3.11!

The asymptotic form (kr→`) is obtained by usinghn(z)
→ i 2(n11)eiz/z (z→`),

ET
D~r ! ˜kr→`

E0r 0

Zea/lD

lDe
2

eikr

r
(

n

2n11

An~n11!

3@ I 2
n~k!B1n

e ~u,f!1I 1
n~k!C1n

o ~u,f!#,

~3.12!

wherer 05e2/(4pe0mc2) is the classical electron radius an
we have definedI i

n(k)[I i
n(k,k), for i 51,2,3. This is the

central result of this work, to be compared with th
asymptotic form for the Mie field~entirely transverse!:

EM~r ! ˜kr→`

iE0

eikr

kr
(

n

2n11

An~n11!

3@an
MB1n

e ~u,f!1bn
MC1n

o ~u,f!#.
~3.13!

The Mie coefficients are very well known from the littera
ture. For a dielectric spherean

M and bn
M are given by

@13#

an
M5

mcn~mx!cn8~x!2cn~x!cn8~mx!

mcn~mx!jn8~x!2jn~x!jn8~mx!

and

bn
M5

cn~mx!cn8~x!2mcn~x!cn8~mx!

cn~mx!jn8~x!2mjn~x!jn8~mx!
,

wherecn(t)5t j n(t), jn(t)5thn(t), m5n1 /n, n1 being the
~complex! refractive index of the particle andn that of the
medium, andx52pna/l.

Thus, besides the longitudinal field~discussed below!, the
Debye field and the Mie field have the same form, the qu
titative differences lying on the coefficients of the expansio
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C. The longitudinal Debye field

Contrary to the Mie field, the Debye field has a longit
dinal component while propagating in the plasma. Fr
~2.4!, ~3.3!, and~3.8! one obtains

EL
D~r !5

2J

pe0e~v!v (
n

i nE
0

`

dhh2I 3
n~h,k!Le1n~h,r !.

~3.14!

The calculations here proceed differently from the transve
case. We cannot use directly the asymptotic expression
the Bessel functionj n(hr) included inLe1n(h,r ), because it
is under integration. Instead, we can splitLe1n in a product
of Bessel function (j n) and vector spherical harmonics (Pmn

s

andBmn
s , see Appendix A! and change the order of integra

tion between theh integral and the integral ofI 3
n , ending up

with an expression involving integrals of the typ
*0

`dhh jn21(hr) j n(hr) 5(p/2)rn21/r n11 @if 0 ,r,r #,
5p/4r 2 @if 0 ,r5r # and50 @if r.r .0# (r is the variable
of integration ofI 3

n). The fieldEL
D is then obtained for arbi-

trary r:

EL
D~r !5 iE0r 0

Zea/lD

k2lDe
2 (

n
i nH @An~n11!B1n

e ~u,f!

2~n11!P1n
e ~u,f!#E

a

r

dre2r/lD j n21~kr!
rn

r n12

2@An~n11!B1n
e ~u,f!1nP1n

e ~u,f!#

3E
r

`

dre2r/lD j n11~kr!
r n21

rn11J . ~3.15!

In the limit r→` the first integral becomes dominant. Ap
proximating it by*0

` one obtains

EL
M~r !;E0Zea/lD

kr0

k2lDe
2 (

n51

`

2n21~n21!!
i n11

~kr !n12

3
~klD!n

~11k2lD
2 !n

@An~n11!B1n
e ~u,f!

2~n11!P1n
e ~u,f!#. ~3.16!

Due to the strong dependence on 1/r n12 the first term (n
51) is dominant. Thus, the asymptotic longitudinal field c
be approximated by the first term of the series, which can
written as

EL
D~r !;E0

Z

11d
ea/lD

kr0

~kr !3

2

11k2lD
2

3S r̂ sinu cosf2
1

2
û cosf cosu1

1

2
f̂ sinf D ,

~3.17!

with
e
or

e

d5
Teneq,i

Tineq,e
~3.18!

an important parameter to be discussed in Sec. IV. Sev
comments are now in order. This field is proportional to 1r 3

and thus it is negligible in comparison to the asympto
transverse field. As can be seen from expression~3.17!, the
longitudinal field is not strictly longitudinal, in the sense th
it is not all parallel tor̂ . This is a simple consequence of th
fact that the vector harmonicL also is not parallel tor̂ .
However, theû andf̂ components depend on 1/(kr)3 and do
not imply any correction to the expression for the transve
field. From~3.17! it is clear that the longitudinal field is no
propagating as an outgoing wave but rather as a kind
evanescent field.

IV. PHYSICAL PROPERTIES OF THE DEBYE-MIE FIELD

A. Simplified expressions and limiting cases

With generality theI 1
n(k) coefficient can be written as

I 1
n~k!5

1

2k2
QnS 11

1

2k2lD
2 D 2E

0

a

drre2r /lD j n
2~kr !,

~4.1!

where we have used the result*0
`dxxe2axj n(bx) j n(cx)

5(1/2bc)Qn@(a21b21c2)/(2bc)# and Qn(x) is the Leg-
endre polynomial of the second kind. It can be easily se
that if a!lD ,l ~wherel is the wavelength of the electro
magnetic field in the plasma!, and for any relation between
lD andl one can neglect the second term of the right-ha
side of ~4.1! comparatively to the first one. This is the mo
common case, and it is equivalent to considering the dus
a point particle. The scattered Debye field~3.11! is then sim-
plified to

ET
D~r !5

1

2
E0r 0Z

1

~klDe!
2

eikr

r (
n

2n11

An~n11!

3FQnS 11
1

2~klD!2D C1n
o ~u,f!

1RnS 11
1

2~klD!2D B1n
e ~u,f!G , ~4.2!

with Rn(x)5@(n11)Qn21(x)1nQn11(x)#/(2n11).
In the Rayleigh limit we will considerl@lD ,a and any

relation betweena and lD , that is, it is indifferent to have
lD.a or ,a. In this limit we can use in~4.1! the
asymptotic expressions for large arguments ofQn and small
arguments ofj n . It turns out that the dominant term in th
series~3.12! is that of B11

e . After some manipulations with
the complete and incompleteg functions one obtains

ET
D~r ! ——→

klDe!1

E0r 0Z
11e

11d

eikr

r
~cosf cosuû2sinff̂!,

~4.3!
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wheree5a/lD andd was already introduced in~3.18!. The
factor e appears in the expression because no magnitude
lation was assumed betweena and lD . If a5lD it repre-
sents a considerable enhancement~a factor of 4 in the cross
section! relatively to the Rayleigh pointlike case, in whic
lD@a.0. Physically it just means that ifa increases with
lD constant, then the Debye cloud expands, having a hig
cross section. The factord is due to the factorlD

2 /lDe
2 ,

which appears because the electrons have a distribution
cording to the potential}exp(2r/lD), but their dynamics
leads tolDe . In other words, the dust is screened by ele
trons and ions, but only the electrons do the scattering
Te5Ti and Z,0, for example, the charge of the grain
screened byZ/2 ions and~by the absence of! Z/2 electrons.
In general, the number of electrons missing in the Deb
sphere isZ/(11d). In the rest of this work we will refer to
Z/(11d) as the number of shielding electrons in the Deb
sphere, having in mind that this number can be negative
a negative dust. IfTe@Ti and the grain density is low~so
that neq,i.neq,e) d represents a severe suppression of
Debye field. As expected, the amplitude of the scatte
wave does not depend onk, which is consistent with the fac
that the incident wave does not ‘‘see’’ the inner structure
the Debye cloud; theZ/(11d) electrons on it scatter cohe
ently. The DS cross section becomes constant, contrar
the Mie case, where the long wavelength regime leads
1/l4 behavior. However, the angular dependence is exa
the same in both cases.

Finally, concerning the small wavelength limit, no simp
expression can be derived. The discussion is simpler if
consider the point particle case~4.2!. If klD→`, then the
argument of the Legendre functions tends to 1, where it
a logarithmic singularity. Thus, an increasing number
terms is needed to compute the Debye field asklD→`, and
no simple closed form can be derived. However, the pre
tor 1/(klDe)

2 goes to zero faster than the Legendre functio
tend to infinity. Thus, we expect that the small wavelen
limit the Debye field has the form

ET
D~r !5

1

2
E0r 0Z

1

~klDe!
2

eikr

r
F~klD ,u,f!, ~4.4!

whereF(klD ,u,f) is a ~vector! function with a weak de-
pendence onklD . This form of the Debye field is verified
numerically, the plot of the Debye cross section being w
fitted by a 1/l4 curve in the small wavelength regime. B
opposition with the Mie process, where the scattering cr
section tends to a constant valuepa2 in the small wave-
length limit, the Debye field vanishes very fast because
electrons in the Debye cloud are scattering the incident
diation out of phase relative to each other.

B. Total cross section

The total fieldEtot5ED1EM is the sum of the Debye an
Mie fields. It can be written in the form of~3.13!, with the
substitutionan

M→an
tot5an

M1an
D , bn

M→bn
tot5bn

M1bn
D , with

an
D ,bn

D52 ikr 0Z exp(a/lD)I2,1
n (k)/lDe

2 . Therefore, the for-
mal results of the Mie theory concerning cross sections
be used almost directly, with minor changes. This is the r
re-
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son why in the following we present only the results acco
panied by the minimum additional information.

Because the total magnetic field satisfiesHtot

→(k/m0v) r̂3Etot (kr→`), the time averaged Poyntin
vector in the asymptotic region iŝS&5Re(Etot3Htot!)/2
5Ae0e(v)/m0r̂uEtotu2/2. The irradiance is simplyI 5^uSu&
and we defineI i (I') as the irradiance for the case when t
incident field is parallel~perpendicular! to the scattering
plane ~defined by the incident and scattered wave vecto!.
Because we have chosen the incident field to be polarize
the X direction,I i is computed fromEtot(X pol,u,f50) and
I' is computed fromEtot(Y pol,u,f50)5Etot(X pol,u,f
52p/2).

The total cross section is calculated from the total sc
tered powerP, s tot5P/I 05*A^S&•dA/I 0, where I 0 is the
incident irradiance. If A is a spherical surface in th
asymptotic region,s5*AIdA/I 0, which, by use of the or-
thogonal relations between theB andC vectors gives

s tot5sM1sD1sMD, ~4.5!

with

sM ,D5
2p

k2 (
n51

`

~2n11!~ uan
M ,Du21ubn

M ,Du2! ~4.6!

andsMD an interference cross section given by

sMD524pZea/lD
kr0

~klDe!
2

3ImH (
n51

`

~2n11!@ I 2
n~k!an

M1I 1
n~k!bn

M#J .

~4.7!

Recalling thatZ can be positive or negative according to t
dust charge sign, we see that the interference term introd
a separation between the total cross sections for oppos
charged dust grains. Therefore, even if the model for
potential around the grain leads to the same form of
perturbation density, as is the present case, the interfer
term ‘‘raises the degeneracy,’’ introducing a difference b
tween the total cross sections. Obviously, this is due to
fact that the sign of the perturbation density changes if
grain charge changes, leading to a phase difference ofp in
the Debye field. This interference term can only be sign
cant if the Debye and Mie fields are of the same order
magnitude. Typically, this happens ifa!l, that is, in the
Rayleigh-Mie regime, where the dominant coefficient isa1

M ,
whose imaginary part is negative. Thus, we conclude tha
the cases of interest the interference is constructive fo
positive grain and destructive for a negative one.

In the Rayleigh limit for the Debye process (l@lD ,a)
one obtains the Debye cross section directly from~4.3!:

sD~klD!1!5Z2s0S 11e

11d D 2

, ~4.8!

wheres058pr 0
2/3 is the Thomsom cross section. This is

agreement with the fact that theZ electrons in the Debye
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cloud are scattering coherently. However, as previously
marked, the correction factor@(11e)/(11d)#2 must be
taken into account because it can represent a strong sup
sion of the coherent effect. Note thatd is at least 1, so that if
e is negligible ~as in most cases!, it introduces at least a
suppression factor of 4.

C. Differential cross section. A possible way to determine
the factors ZÕ„1¿d… and lD

The angular variation of the scattered field can be
equately described by the radiant intensitydP/dV ~units
W sr21), defined by P5*4p(dP/dV)dV⇒dP/dV5R2I ,
whereR is the radius of the spherical surfaceA considered
above, or equivalently by the differential cross section~di-
mensions m2 sr21), defined from s5*4p(ds/dV)dV
⇒ds/dV5R2I /I 0. Thus, the differential cross section ca
be also be split into the sum of its parallel and perpendicu
components, which are

S ]s

]V D
i
5

1

k2 U(n
@an

totpn~u!1bn
totqn~u!#U2

, ~4.9!

S ]s

]V D
'

5
1

k2 U(n
@an

totqn~u!1bn
totnn~u!#U2

, ~4.10!

with pn(u)5@nPn11
1 (cosu)/(n11)2(n11)Pn21

1 (cosu)/n#/
sinu and qn(u)5(2n11)Pn

1(cosu)/n(n11)sinu. Plots of
these quantities are shown in Sec. IV E

For most of the experimental situations the measure of
total cross section is not possible, but only the differen
cross section in some allowed/accessed directions. Natur
the casesu50 ~forward scattering! and u5p ~backscatter-
ing! are of particular interest, not only for experimental pu
poses, but also because the infinite series of the Debye
can be summed exactly, leading to a simple expression
dependent of the relation betweenl andlD .

For u50 the associated Legendre functions sati
limu→0Pn

1(cosu)/sinu52n(n11)/2, which implies that the
parallel and perpedicular differential cross sections are e
and

ds

dV
~u50!5

1

4k2U(n51

`

~2n11!~an
tot1bn

tot!U2

. ~4.11!

We are interested in describing the wavelength range wh
the Debye field is of the same order of magnitude or gre
than the Mie field. This happens when the Mie field is
ready in the Rayleigh regime, and so we retain only
-

es-

-
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e
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ly,

-
ld
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al
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dominant Mie term, which isa1
M . Thus, the sum to perform

is now restricted to Debye terms. Using the result(n50
` (2n

11)Qn(11e)51/e ~which can be derived from the we
known general expression(n50

` (2n11)Qn(t)Pn(z)5(t
2z)21, valid for complexz inside an ellipse passing throug
t, and having foci at the points61 @24#! and the explicit
form of the Mie coefficienta1

M , given above, one obtain
finally

ds

dV
~u50!5Um221

m212
U2

a6k41r 0
2S Z

11d D 2

12ReS m221

m212
D r 0

Z

11d
a3k2. ~4.12!

It is important to note that if the particle properties (a and
m) are known, thends/dV(u50) depends only on the pa
rameterZ/(11d), the number of electrons in the Deby
sphere.

For u5p a similar deduction can be made usin
limu→pPn

1(cosu)/sinu5(2)nn(n11)/2 and (n50
` (2n

11)(2)nQn(11e)51/(21e), with the result

ds

dV
~u5p!5Um221

m212
U2

a6k411r 0
2S Z

11d D 2 1

~114k2lD
2 !2

12ReS m221

m212
D r 0

Z

11d

a3k2

114k2lD
2

. ~4.13!

Therefore, in the backscattering case there is an extra de
dency on the parameter 114k2lD

2 relative to the forward
scattering case and the information on the parameterZ/(1
1d) is mixed with the information on the plasma parame
lD .

These results suggest a way to determine the param
Z/(11d) andlD . The curvesds/dVu50,p(k) have a mini-
mum. Taking the derivative of~4.12! and~4.13! in order tok
and equating the result to zero one obtains two express
for Z/(11d). The forward case gives

Z

11d
52

umu2a3k0,min
2

Re~m!r 0
, ~4.14!

where k0,min is the value ofk where the differential cross
section foru50 attains the minimum and we have defin
m5(m221)/(m212). The backscattering case gives
Z

11d
5

Re~m!a3~114kp,min
2 lD

2 !

8r 0lD
2 F16A1116

umu2

@Re~m!#2
kp,min

2 lD
2 ~114kp,min

2 lD
2 !G , ~4.15!
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wherekp,min is the value ofk where the differential cross
section foru5p attains its minimum. The forward scatterin
case allows the determination ofZ/(11d) if one knows the
properties of the spheres alone, whereas the backscatt
case needs the previous knowledge of the Debye len
However, if both possibilities are experimentally availab
we can equate the right-hand sides of~4.14! and ~4.15!, and
it turns out thatlD is the solution of the polynomial equatio

114S umu2

@Re~m!#2
k0,min

2 1kp,min
2 D lD

2

2
kp,min

2

k0,min
2 ~114kp,min

2 lD
2 !350. ~4.16!

As discussed in the introduction and in Sec. VI, this meth
applies to a collection of grains if, first,nd

21/3.lD and, sec-
ond, the grains are monodisperse in size.

D. Degree of polarization

Finally, we define the degree of polarization of the sc
tered field for a totally depolarized incident field. As usual
is given byP5(I'2I i)/(I'1I i).

The curveP(u) is the same for all incident wavelength
in the Rayleigh regime for the MS. This is due to the fa
that our treatment is single scattering, which means that
scattered field by the Debye cloud preserves the polariza
curveP(u) of an individual electron. It is easy to see that
two electrons, 1 and 2, have individual degrees of polar
tion p5(I' i2I i i)/(I' i1I i i), i 51,2 ~at a given angleu),
then I'T}(E'11E'2)2 and I iT}(Ei11Ei2)2 still satisfy p
5(I'T2I iT)/(I'T1I iT) for the same angle. The reasonin
can be extended to an arbitrary number of electrons.
polarization curve for the Raleigh-Mie field is the same
that for an electron and so the previous argument also ap
to a sphere and cloud of electrons. As a final conclusion,
polarization curve in the Born approximation is expected
be always the same for all incident wavelengths, and equ
P(u)5(12cos2u)/(11cos2u). This is confirmed numeri-
cally.

E. Some numerical examples

In all of the plots discussed below it is assumed thad
51 and the complex refractive index of the particle isn
521 i .

1. Cross sections

In Fig. 1 we present a plot of the total cross section fo
charged spherical particulate immersed in a typical plas
processing chamber environment@12#. The radius of the
grain is a510 nm, the Debye length was assumed to
lD51 mm and the charge of the grain isuZu5100. The
curves represent the variation with the incident wavelengtl
of the quantitiess tot for a positive and for a negative charg
sM, sD and sMD. These calculations follow from expres
sions ~4.5!, ~4.6! and ~4.7!, with the DS coefficients calcu
lated neglecting the integral*0

a in ~4.1!.
ing
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It is clear that in the wavelength range 8–40mm the in-
terference cross sectionsMD introduces a shift between th
total cross section curves for the positive and negative du
In the case of a negative dust, this effect almost spoils co
pletely the scattering enhancement effect in the 10-mm
range. Furthermore, in this case a minimum is observ
whereas in the positive charge case the curve ofs tot is mono-
tonic. This happens precisely in the transition region wh
Mie and Debye processes are equally important. Forl,8
mm the MS dominates whereas forl.40 mm it is the Debye
process that dominates.

Thinking of an environment closer to that of a dusty cry
tal experiment@10#, the value ofa should be taken as ap
proximately 1mm, the Debye length as;100 mm, and the
charge maybe as high as 103 or even 104. The transition
region would be shifted towards the millimeter waveleng
range becausesM}a6l24, but the Rayleigh limit for the
Debye cross section would rise to;106,108s0.

In some conditions the interference term is negligib
This can be seen in Fig. 2, where we assumed a dust
typical space plasma:a51 mm, lD51 m, anduZu51000. In
this case the transition region is given byl;0.1 m, and the
MS cross section is entirely given by the first~Rayleigh!
term. On the contrary, for the DS we are still in the regi
l!lD and a large number of small terms is required
compute the cross section. Therefore, becausesMD is the-
sum of the cross terms of the typean

Mbn
D andbn

Man
D , only the

first term will contribute~becausea1
M@b1

M ,an
M ,bn

M , i>2),
and not much, becausea1

D andb1
D are small and of the sam

order of magnitude of the nextan
D , bn

D hundred terms.
Therefore, in this case the splitting introduced bysMD is
negligible and the total cross section for positive and ne
tive grains is identical. Finally, note that the Debye cro
section falls to zero asl→0 slightly slower than the Mie

FIG. 1. Cross sections for Mie and Debye scattering~normal-
ized to the Thomson cross section! in a typical environment of a
plasma processing chamber (lD51 mm, a510 nm, and uZu
5100) as a function of the incident wavelength. The interferen
term sMD is also represented and leads to a difference betw
positively and negatively charged grains in an intermediate reg
of l;10 mm. Due to this interference,sD is almost one order of
magnitude smaller thans0Z2. The Rayleigh limit for Debye scat-
tering is constant.
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cross section does asl→`. We know that the latter follows
a 1/l4 dependence, which means thatsD is falling asl42a,
with a a small number, in accordance with~4.4!.

2. Differential cross sections

In Fig. 3 we show the angular dependence of the sca
ing. The plots showI i and I' normalized by its maximum
values ~at u50) for a51mm, lD51m ~typical space
plasma!, Z521000 and for three different values of the i
cident wavelength:l51, 10 and 100 m. The calculation
follow from ~4.9! and ~4.10!.

In the long wavelength limit the plots reproduce the sha
of the Raleigh-Mie curves, that is, inverse bell shaped for

FIG. 2. Cross sections~normalized to the Thomson cross se
tion! for Mie and Debye scattering in a typical space plasma (lD

51 m, a51 mm, anduZu51000), as a function of the wavelengt
The interference termsMD is not important in this case.

FIG. 3. Radiant intensity normalized by the maximum value
u50. The physical parameters are the same as in the prece
figure. The left~right! curves are relative to incident radiation p
larized parallel~perpendicular! to the scattering plane~defined in-
cident and scattered wave vectors!. For large values ofl the curves
are equal to the Rayleigh-Mie case and forl;lD the scattering is
strongly forward peaked.
r-

e
e

parallel irradiance and flat for the perpendicular irradian
When the incident wavelength decreases the curves sho
strong tendency to peak in the forward direction.

In Fig. 4 we show the variation ofds/dV ~normalized by
s0) with l for u50 ~forward scattering! and u5p ~back-
scattering!. These curves are calculated from the exact
sults ~4.12! and ~4.13!. The values used area51 mm, lD
57 mm, anduZu51000. Thus, they correspond basically
an ionospheric plasma environment.

In both cases the upper curve represents the caseZ.0,
which has a minimum in the backscattering case, but no
the forward scattering. Note that the minimum is attained
different wavelength ranges in each case. In the backsca
ing it is around 20 mm, almost in the regionl@lD , whereas
in the forward scattering the minimum occurs at 4.8 m
,lD . The reason for this is that the DS is much stronger
the forward than in the backward direction and therefore
wavelength scale on which its magnitude is comparable
that of MS is smaller in the forward than for the backwa
scattering. Application of expressions~4.14!, ~4.15! and
~4.16! with k0,min52p/(4.831023) m21 and kp,min
52p/(231022) m21 allow us to determineZ/(11e) and
lD .

3. Degree of polarization

Figure 5 shows the polarization degreeP5(I'2I i)/(I'

1Ii), calculated through the expressions~4.9! and~4.10!. As
previously discussed, it is expected that in the Born appro
mation the polarization curve remains unchanged for all v
ues of the incident wavelengthl. Numerically, this is ob-
served in this figure, witha51 mm, lD51 m, Z521000
and for three values ofl, 1, 10, and 100 m. As the value o
l decreases more terms in the series~4.9! and ~4.10! are
needed to get convergence. NeverthelessP tends always to
the curve expected.

t
ing

FIG. 4. Differential cross sections foru50 ~forward scattering!
and u5p ~backscattering!, for Z.0 andZ,0. The values of the
parameters used here correspond roughly to the ionospherelD

57 mm,a51 mm, anduZu51000. The minimums do not coincide
Again, the difference betweends/dV for positive and negative
grains is very large in the transition region.
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V. A CORRECTION TO THE DISPERSION RELATION
FOR A ELECTROMAGNETIC WAVE PROPAGATING IN

A PLASMA

In this section we show that the presence of dusts i
plasma introduces a change in the usual dispersion equa
v25vpe

2 1c2k2 ~where we neglected consistently the ion d
namics!.

If we define the ~normalized! scattering amplitude
f(k,u,f) by

ED~r !5E0

eikr

r
f~k,u,f!, ~5.1!

then it is a well known result of electrodynamics@27,28# that
the dielectric constant of the medium is related to the s
tering amplitude in the forward direction by

e~v!511
4pN

k2
ê0* •f~k,u50!, ~5.2!

whereN is the density of scatterers andê0 is the unit vector
in the direction of the incident field. This expression is va
under the conditions of validity of single scattering.

Let us determine what is the influence of the Deb
spheres in the dielectric constant. Because the DS is du
the fluctuation in the electron density around the dust, i
the influence of this heterogeneity that we are going to qu
tify, and not that of the whole bulk of electrons. The latt
contributes to the dielectric constant as2vpe

2 /v2, a contri-
bution that we will add to that of the Debye spheres.
should be noted that the contribution of the bulk electro
can be obtained from~5.2! on usingN5neq,e and the scat-
tering amplitude for Thomsom scattering.

FIG. 5. Polarization degree of the scattered radiation from
depolarized incident field. Plasma parameters identical to thos
Fig. 2. The curves are identical for all incident wavelengths, sho
ing the Rayleigh pattern.
a
on,

t-

to
s
n-

t
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We takeN5nd , the density of grains, which is related t
the electron and ion average densities through~2.1!, ê05 x̂
and e(k,u,f) is simply given by ~4.2! multiplied by
E0

21rexp(2ikr). To determinef (k,u50) we use the method
in Sec. III A and arrive again at a sum previously used
Sec. IV C,(n50

` (2n11)Qn(11e)51/e. The final result is

f(k,u50)• x̂52r 0Z/(11d) and the contribution of the De
bye ‘‘globules’’ to the dielectric constant is

e~v!512
vpe

2

k2c2

Znd

neq,e

1

11d
. ~5.3!

This result was derived from the optical theorem by us
the scattering amplitude of transverse electromagnetic wa
in a plasma. Therefore,e(v) in ~5.3! must be identified with

the transverse part,eT(k,v), of the dielectric tensorē̄. The
dispersion relation for the transverse electromagnetic w
will be obtained by adding the bulk contribution2vpe

2 /v2 to
eT and then by writing the usual conditioneT(v)
5(kc/v)2. This leads to

v25k2c21vpe
2 S 11

Znd

neq,e

1

11d D . ~5.4!

Therefore, the ‘‘globulization’’ of the dusty plasma intro
duces a correction in the electron plasma frequency. As
pected, it tends to zero asnd→0. Simple estimates show tha
this correction can be of the order of 10%. For example, i
dusty plasma device@29#, the following values are possible
Z;103, neq,e;108 cm23 andnd;104 cm23. If d;1, then
the correction factor in~5.4! is approximately;0.1.

VI. CONCLUSIONS

We have derived the expression for the field scattered
the Debye cloud around a charged dust in a plasma, give
~3.12!. Using the formalism of the Dyadic Green function
we have found the expansion of the Debye field in a se
spherical vector wave functions, in analogy with the M
field. Thus, the Debye-Mie field can be expressed in a co
mon basis, allowing for a unified treatment. MS dominates
small wavelengths and DS dominates at large waveleng
In most of the cases there is a minimum in the transit
region between these two regimes, where MS and DS ar
the same order of magnitude. Three main results were
rived from this global view.~1! The total cross section~4.5!
has an interference term~4.7! between the Mie and Deby
fields, originating a total cross section larger~smaller! than
the sum of Debye and Mie individual cross sections, fo
positive~negative! grain. This effect can be important in th
transition region.~2! The Debye model for the potential a
lows us to sum exactly the Debye series for forward a
backward scattering, leading to simple expressions for
differential cross section in these directions,~4.12! and
~4.13!. From these expressions a method for determining
values ofZ/(11d) andlD was devised, based on the ide
tification of the minimum of the curvesds/dV(u50) and
ds/dV(u5p). It expressed by~4.14!, ~4.15!, and~4.16!. ~3!
The relation between the dielectric constant and the forw
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scattering amplitude allows us to derive a correction for
dispersion relation for an electromagnetic wave propaga
in a dusty plasma,~5.4!. This correction is due to the
‘‘globulization’’ of the plasma and can go up to 10%
realistic plasma conditions.

The results for the Debye cross section agree essent
with those of Binghamet al. @19# in the long and small
wavelength limits, the only cases where a simple analyt
comparison is possible. Let us recall that the result of th
authors in the high frequency limit (v@vpe) is

sD524p6s0ln
2v0

vp
uZk

effu2, ~6.1!

whereZl
eff is an effective charge, depending on the incide

wave numberk. Their asymptotic expressions areZk
eff;Z for

l@lD andZk
eff;Z(l/lD)2 for l!lD .

Therefore, the long wavelength limit agrees with~4.8!
apart from a numerical factor. The small wavelength limit
in agreement with~4.4!.

It should be stressed that our approach is applicable to
model for the potential around the grain. We have chosen
simplest model and yet realistic enough, the standard De
potential. More complicated models such as those used
Bigham et al. @19# or by Whippleet al. @5# can be used; it
just a matter of substituting~3.2! by the appropriate curren
term, as long as the linearization of the Maxwell equatio
can be made, that isñe!neq,e . Of course, analytical result
are no longer available, but the numerical calculations can
made.

One more point in favor of the generality of this approa
is that the results for the Debye field are applicable eve
the dust grain is not spherical, because the Debye cloud
remains approximately spherical. On the contrary, the M
field depends on the geometry of the particle.

The fact that the dust is treated as a charged sphere r
the question of the influence of the charge in the Mie fie
This problem has already been addressed by Bohren
Hunt @30#, who have shown that in the case of a dielectric
imperfectly conducting charged sphere there are two con
butions for MS, one coming from the bulk dielectric functio
and the other from surface dielectric functions, associa
with the surface currents induced by the incident field. T
latter can be included in the Mie theory through a pheno
enological surface conductivity, although with limited resu
and usefulness, mainly because of the difficulties in de
mining this parameter. Besides, it is expected that this
face contribution give only a small correction to the M
field. Therefore, in our joint description of Mie and Deby
fields we have retained only the dominant bulk contribut
for MS.

The Debye sphere acts like a particle, due to cohe
scattering of the electrons inside it. Therefore, the De
scattering should be regarded as scattering by a macro
ticle, although it is really the result of scattering by fluctu
tions in a continuous medium~we have assumed the validit
of the fluid model conditions!. If there is a collection of
randomly distributed dusts, the Born approximation gives
coherent scattering: the total irradiance is the sum of in
vidual irradiances. The dusts can be considered as unc
lated if the distance between the grainsb is larger thanlD ,
e
g
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b.lD . If this condition is not fulfilled the Debye sphere
overlap and our picture of an isolated dressed grain
spoiled. The dust grains become correlated and the tota
radiance is much more difficult to calculate.

The application of the proposed method for the deter
nation of the parametersZ/(11d) andlD is possible for a
collection of uncorrelated dust grains, because in this c
the relations~4.12! and~4.13! remain valid for the total scat
tered field from all the scatterers. The case of a collection
correlated dust grains demands further investigation. Ho
ever, the present results suggest obvious interest in the
ploration of the correlated case.

Finally, it is important to mention that very recently a
tronomic observations have shown that the role of dust em
ting in the submillimeter and microwave bands is much m
important than previously thought@31#. Presently it is be-
lieved that dust emits more radiation in this waveleng
range than all the visible stars. Debye scattering can be
nificant in this region of the electromagnetic spectrum, a
thus its study very important for future research in this fie

APPENDIX: THE SPHERICAL VECTOR WAVE
FUNCTIONS

In this appendix a brief summary of the most importa
formulas related to the set of spherical vector harmonic
presented. Our notation is consistent with Morse and Fes
bach@24# and Tai@26#.

1. Explicit expressions

Lsmn~k,r !5Pmn
s ~u,f!

1

k

d

dr
j n~kr !1An~n11!

3Bmn
s ~u,f!

1

kr
j n~kr !. ~A1!

Msmn~k,r !5An~n11!Cmn
s ~u,f! j n~kr !, ~A2!

Nsmn~k,r !5n~n11!Pmn
s ~u,f!

1

kr
j n~kr !1An~n11!

3Bmn
s ~u,f!

1

kr

d

dr
@r j n~kr !#, ~A3!

where the vector spherical harmonics are

Bmn
s ~u,f!5

An~n11!

~2n11!sinu H ûFn2m11

n11
Xn11

m ~u,f!

2
n1m

n
Xn21

m ~u,f!G
1f̂

m~2n11!

n~n11!
iXn

m~u,f!J , ~A4!
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Cmn
s ~u,f!5

An~n11!

~2n11!sinu H 2f̂Fn2m11

n11
Xn11

m ~u,f!

2
n1m

n
Xn21

m ~u,f!G
1û

m~2n11!

n~n11!
iXn

m~u,f!J , ~A5!

Pmn
s ~u,f!5X̂n

m~u,f!, ~A6!

whereXn
m(u,f)5eimfPn

m(cosu).

2. Orthogonality relations

n~n11!E Lsmn~k,r !•Ls8m8n8~k8,r !d3r

5E Msmn~k,r !•Ms8m8n8~k8,r !d3r

5E Nsmn~k,r !•Ns8m8n8~k8,r !d3r
m

o-

s

m

s

no

f

5
2p2

h2Cmn

dss8dmm8dnn8d~k2k8!, ~A7!

whereCmn5(22d0)(2n11)(n2m)!/n(n11)(n1m)!,

E Bmn
s ~u,f!Bm8n8

s8 ~u,f!dV

5E Cmn
s ~u,f!Cm8n8

s8 ~u,f!dV

5E Pmn
s ~u,f!Pm8n8

s8 ~u,f!dV

5
4p/em

2n11

~n1m!!

~n2m!!
dss8dmm8dnn8 , ~A8!

with em51 if m50 and52 if mÞ0.
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