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Mie and Debye scattering in dusty plasmas

R. Guerrd
Area Departamental de Bica, UCEH, Universidade do Algarve, Campus de Gambelas, 8000 Faro, Portugal

J. T. Mendona
GoLP/Centro de Rica dos Plasmas, Instituto Superiorc¢heco, Avenida Rovisco Pais, 1096 Lisboa Codex, Portugal
(Received 23 June 1999

We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that
includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accom-
plished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud,
which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we
treat the Debye-Mie field as a whole and study its properties. The main results of this study the Mie
(Debye field dominates at smallarge) wavelengths and in the Rayleigh limit the Debye field is const@nt;
the total cross section has an interference term between the Debye and Mie fields, important in some regimes;
(3) this term is negative for negative charge of the grain, implying a total cross section smaller than previously
thought;(4) a method is proposed to determine the charge of the gaiided by a certain suppression fagtor
and the Debye length of the plasni&) a correction to the dispersion relation of an electromagnetic wave
propagating in a plasma is derived.

PACS numbse(s): 52.25.Zb, 52.40.Db, 42.68.Mj, 94.10.Gb

I. INTRODUCTION [1,17]. However, the effect of the plasma is not taken into
account in these applications. In this paper we show some
In this work we study the scattering of an electromagneticsituations where scattering by the plasma can be as important
wave by the system composed of a charged dust grain, aas Mie scattering.
sumed spherical, and the surrounding screening Debye The physical picture of our problem is simple: the highly
sphere. This problem arises in the context of the study otharged dust is screened by the Debye cloud that forms
dusty plasmas, but is also related closely to the theory of Mi@round it. This cloud is a heterogeneity in the electron and
scattering. Therefore, this is a classical electromagnetisrion average densities and thus it will scatter the incident
problem applied to the environment of laboratory as well agadiation. Therefore, there is the simultaneous scattering by
natural plasmas, such as ionospheric or space plasmas. the spherical dudiMie scattering(MS)], and by the Debye
The study of dusty plasmas has been growing in impor<loud [Debye scattering(DS)].
tance in the last yeardl—12]. Roughly, a dusty plasma is The importance of the DS can be easily understood con-
composed of dust particulates surrounded by an electron-iosidering a limiting case. If the incident electromagnetic ra-
plasma. Due to the electron and ion currents, photoemissiodiation has wavelengtih>\y (where \p is the Debye
and secondary emission, the dusts become charged up length, the charges inside the Debye sphere scatter radiation
hundreds or thousands of elementary chafg§¢sThe dusty  coherently and thus the scattering cross secsignfor this
plasmas are present almost everywhere: interstellar cloudprocess is strongly enhanced relative to the cross section of a
circumstellar and protoplanetary accretion disks, planetargingle electrono, (the Thomson cross sectiprbeing ap-
rings, comets, planetary magnetosphé¢#e§,7], and in labo-  proximately given byZ?o, whereZ~10*1C° is the charge
ratory environments, such as plasma processing def@es number of the grain.
or, more recently, in the promising new field of dusty crys- This argument was first presented by Tsytovéthal.[18]
tals[9,10]. and Binghanet al.[19], who have first studied the problem
Mie theory is a classical area of optical phydi¢8,14). It  of DS starting from the Vlasov equatidincluding an equi-
describes the scattering of electromagnetic waves by Hbrium distribution function for the electrons around the
spherical particle and it has been successfully applied to dusy and Fourier transforming the wave equation. La Hoz
vast range of problems, e.g., in the study of atmospheri¢20] developed the theory for the study of radar bckscattering
aerosols or rainfall measuremefis]. from dusty plasmas. Following the same lines Vladimirov
Mie theory is also used in a variety of plasma environ-[21] included the effect of dust charge fluctuatidi®®] in
ments, for example, in the study of noctilucent clo(idi§], the process, but using essentially the same methods. He
for sizing contaminants in plasma processing chamberfound a dependence of DS on the parameters characterizing
[11,12 or in the study of scattered light by intergalactic dustthe dust charging.
In this work we treat the problem of DS following a
method closely related to the method used to study MS, ex-
*Present address: Department of Experimental Physics, Umegdressing the Debye field in a Mie-like series of spherical
University, SE-90187 Umed&, Sweden. vector wave function§23,24]. The basic idea is to solve the
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wave equation with the aid of the Dyadic Green Functionpart of the scattered fields;, satisfies[a dependence of
[25,24 (DGP), instead of going to thé& space. The DGF is  exp(—iwt) was assuméd
expressed in a series of spherical vector wave functions, and
thus the Debye field is determined in a similar form. VXVXEr—K?Er=ipowdr, (2.2
The advantages of this approach are the following: ease in
the calculations of cross section, irradiances, and polarizavhere k=w+e(w)/c is the wave number entering in the
tion; direct physical interpretation, in parallel to MS; possi- Plasma dispersion equation for transverse wae¢s,)=1
bility of describing the Mie-Debye process as a continuum,— co,zjelw2 being the dielectric constant of the plasnma,(is
being dominated by MEDS) in the short(long) wavelength  the electron masswzzwgeJr k?c?, andJy is the transverse
regime, and having an intermediate regime where the Debypart of the nonlinear current
field and the Mie field interfere to produce a mixed cross .,
section:oror=0y+op+oyup. Furthermore, we shall see J= iﬁE 2.3
that in the forward and backward directions the expansion T Mme Y '
series for DS can be summed exactly, giving as a bonus a
method for determining the chargeivided by a certain cor- arising from the nonlinear interaction between the incident
rection factoy and the Debye length. Finally, the relation field and the Debye density perturbation. Equati@r®) is
between forward amplitude scattering and dielectric constargeneral, wherea®.3) is particular to a simple cold electron
allows the determination of a correction to the dispersionmodel. Note that . is defined from the equilibrium density
relation of a electromagnetic wave propagating in a dustyneqe, and does not take into account the effect of the density
plasma. fluctuations. This is not an approximation; the fluctuation
Finally, it should be stressed that we treat a static probdensity effects are described through the nonlinear current,
lem, that is, the Debye cloud is assumed to be a static penot by the plasma frequency.
turbation around the charged sphere. Also, we treat mainly TheV-E Maxwell equation leads to the equation for the
the problem of one scatterer. However, if the grains are falongitudinal scattered fields, :
enough apart so that their interaction is negligible, if they are _
randomly distributed, and if they have all the same radius, !

then we can assume that the total irradiance is the sum of EL=- eoe(w)wJL’ 24
irradiances.
with J; the longitudinal part ofl.
Equationg2.2) and(2.4) constitute the basic equations of
Il. DESCRIPTION AND FORMAL SOLUTION our problem. To find the scattered transverse field we need to

TO THE PROBLEM solve Eq.(2.2) using the technique of the Dyadic Green

A. Equation for the Debye field derived from Maxwell functions(DGFs9, with the appropriate boundary conditions.

and fluid equations for the plasma o
) o ) B. The transverse scattered field in terms
Consider a plasma consisting of electrons, ions, and dust of the Dyadic Green function of the first kind

grains, positively or negatively charged. In equilibrium, the ) i -
spatially averaged densities of these components are related Following Tai[25] the DGF for(2.2) satisfies
b = — —
Y VXVXG(r,r')—k2G(r,r')=18(r—r"). (2.5
Nege™ NegiTZNg=0, (2.1 _ _
The fieldE; can thus be obtained as

wherengq . andngq; are the electron and ion equilibrium . L=, ,
average densitieéve have assumed unitary charge for the ET(r)_"”'“OfV,JT(r )-G(r,r)dVv
ions), ng is the density of grains, and the number of
charges attached to it, which can be positive or negative. The
Debye shielding cloud formed around the grains represents a
(stationary local perturbation in the electron and ion mean ) _
densities, which we will caih, andn;. Thus, the picture of —[N"XEx(r)]-V'XG(r',1)}dS, (2.6

the plasma that we are considering in this work is that of a , . .

uniform plasma with bumps or depressions in the mean elecd/N€re V' is the entire space excluding the sphere. For a
tron and ion densities around the position of the grains. Conconducting sphera’ XE(r')=0 in S’ and if the DGF sat-
sider now that a p|ane e|ectromagnetic Wa%,BO) propa- isfies the _Dirichlet boundary Conditio(‘DGF of the first
gates through the plasma. We assume that only the respongiad) n’ X G(r’,r)=0 at the surface of the sphere, then the
of the electrons to the incident wave is significant, becausgansverse scattered field is simply

the ions are much heavier. The incident electromagnetic field

+ 4 (liougH(r))- (7 <G(rn)
S

will be scattered by the plasma local heterogeneities, that is ) = , ,
to say, by the Debye clouds, originating a scattered field Er(r)=iwuo V,G(r,r ) Jr(r)dv’. 2.7
(Es,By).

The Maxwell and fluid equations may be combined toThis result shows that for a conducting particle the scattered
give the equation for the scattered fi¢Rb]. The transverse field does not depend on the surface charge. In the case of a
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dielectric or imperfectly conducting sphere the Debye field G(r r’)=§o(r r’)+§s(r o)

will have a contribution from the interior boundary of the

volume V’, that is, from the surface of the dust. The field o "o = "o

scattered by the bulk volume will induce a field on the sur-\;vch;[gr(;g(gg,):_I?;ﬁiyf:ﬁg ﬁgzcggfgeiﬁéég v)\/r:;tt\r/]vee will
face of the grain, and this induced field will contribute to the -5)| the primary Debye field, which is the field directly radi-
total scattered field. However, Np>a, we expect that the  ated by the Debye cloud, and the scattered DGF generates
effect of the surface is negligible compared to the effect ofthe secondary Debye field, which is the primary field scat-
the volume. Therefore, even in the case of a dielectric otered by the surface of the sphere. We can describe it as a

(2.9

imperfectly conducting sphere we still adoj7) to calcu-
late the scattered field.
The appropriate DGF for our problem is

= , 1. , ik
Go(r,r )=—Err5(r—r )+

4

> c

o,mn

where the functionsM ,,n(k,r) and Ny m(k,r) (with o

=ge,0 an index for parity andn,n integers are transverse
solutions of the equatiof X V X F—k2F=0. The superscript
(1) is assigned to thil andN functions if they include in its

M (KM (K, )+ NS (K PNk, T7),
™ M (K DME (Ko ) 4+ Nyma(k, NG (k7

“first Debye and then a Mie field.” Obviously, the second-

ary Debye field is always smaller than both Mie and Debye

primary fields and we neglect it in a first approximation.
The free space DGF is given by

r>r’

2.
r<r’ 29

positive or negative. More realistic and complicated poten-
tials are available in the literatu®Vhipple [5]) but, essen-
tially, they are very similar to the simple Debye potential.
Furthermore, the latter has great advantage for analytical

expression the spherical Hankel function of the first kind,work. The electron density is given bie(r) =nNeq e+'ﬁ
h,(kr), and no superscript is assigned if they are defined= Neg,e@XH €A(1)/Ko Tel=Neqd 1+e6(r)/KsTe], Where we have

from the Bessel function of the first king,(kr). Its explicit
form is

M omn(K, 1) =V X [$romn(K,1)r] (2.10
N(rmn(kvr):%vax[wamn(k!r)r]y (2.1

with ¢, mn(k,r) the well known scalar solutions o¥2y
+K2y=0: omn(k,r)=2z,(kr)P(cosf)f(m¢), with z, a
spherical functionBessel or Hankel P]'(cos#) an associ-
ated Legendre function arfd= cos(sin) fore=e(0). Finally,
the coefficient of the expansion i€.,,=(2— d)(2n
+1)(n—=m)!/n(n+1)(n+m)!.

Besides the transverse vector solutidhsaandN we shall
need the longitudinal solutioh:

Lgmn(k,r)=%V¢Umn(k,r). (2.12

Ill. CALCULATION OF THE DEBYE FIELD

A. Expansion of the current in the vectors M, N, and L

The use 0of(2.7) requires that the current is expressed in

the basis constituted by the vectdvs N andL. With this

expansion it is a trivial matter to perform the volume integral

by the use of the orthogonal relatiof&7) of Appendix A.

We begin by making an explicit choice for the density per-

turbation and thus for the current.

assumed thaed(r)/kgT.<1. If the incident field is given
by

Eo=Eqe'(kz~ by, (3.1
then, by use of(2.3 we obtain for the currente '
omitted

—ri\p

” - _e’Ey zeto
J(r)=JTe' Z9(r—a)x, J

47m w)\ZDe
(3.2

whered(r —a) is the unit step function centeredrata (=1
if r>a and=0 if r=a), introduced to take into account the
obvious fact that the electron plasma current only exists out-
side the sphere. Note thatdepends on the plasma and the
incident wave parameters.

Now we make an eigenfunction expansion of the current:

—r/\p

J(r)=J e*Zg(r —a)x

= ["ah 3 [amhM i)

+Bomn(N)Ngmn(h,r) + Comn(h) L smn(h,r)].
(3.3

To determine the coefficients of the decomposition we mul-

For the Debye electrostatic potential around the chargetlply successively both sides 0€3.3) by M, N, and

sphere, ¢, we use the standard formulag(r)
=(Zeldmegr)exd —(r—a)/\p], whereZ is the number of el-

L, mnr(h’,r), integrate inr and use the orthogonality rela-
tions (A7) of the Appendix. For thé coefficients, for ex-

ementary charges attached to the grain and can be eithample, we obtain
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h’Cpn- [ .

b(,mn(h)sz—r;nx-L drre*”"Dej dQe**N, ,(h,r),
ar

(3.9

wherer=(r,0,¢) and dQQ=sin6dfd¢; we are using the
standard spherical coordinatespeing the angle betweean

and thez axis (parallel tok). To perform the angular integral
we decompos®,,,(h,r) in the vector spherical harmonics

[24], Pr.(6,¢), B (0,¢), and C7 (6,¢), according to
(A3) of the Appendix. Then, we use the fact that

JdQe‘kZP;n(9,¢)=4win—1Lomn(k,u=o,u)

and
J dQe*?BY (6,¢)=4mi" N m(k,u=0p)/n(n+1),
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ing the orthogonality relations for these vectors. The integra-
tion can be performed over the entire space because the cur-
rent vanishes for <a. The orthogonality relations produce
the factoré(h—Kk) to be used under theintegration in(3.3).
Because we are interested in the field far away from the
sphere, we can assume that the point of observation, located
atr, satisfies >r’, wherer’ is a source point. Therefore we
take the upper branch ¢2.9) and neglect the function of

this expression. The final result (e add a superscrif,

for Debye

move(w)
c

oS (2n+1)i

EQ(r):J n n(n+1)

X[1IME (k,r) =il 3N (k)]
(3.11)

The asymptotic form Kr— o) is obtained by usind,(z)

. Hs 1)l
where ,u=0p) are the angular coordinates of the vector—i """ Ve%/z (z—=),

k=kz. Splitting again N,,,(k,u=0p) and L, n,n(k,u
=0p) in its vector harmonic components, usimif, (u

=00)=28,60m0, B&(U=0p)=—(1/2)yn(n+1)XSm1,

B (u=0p)=—(1/2)yn(n+ 1)yé,,; and the recurrence re-
lations for the spherical Bessel functions, finally one obtains

the expression for thb coefficients:

i"t12(2n+1)

_ - 2|n
b(rmn(h)_ 5095m1J T n(n+ 1) h IZ(hlk)! (35)
with
n 1 * —r/\ H H
(k)= 5n1 ), drre Pl + Din-a(hn)jn-a(kr)

tNjn+a(hn)jnea(kn)]. (3.6

Following similar steps one obtains, for tleand c coeffi-
cients,

i"t22(2n+1)

_ - 21n
ao'mn(h)_éo'oﬁml‘J T n(n+1) h I]_(h1k)1 (37)
n+1
Cumn(h) = 5ue6m1‘]72h2| g(h,k), (38)
with
|2(h,k)=f drre="0j (hr)j,(kr), 3.9
a
13hko= | “drre (0 (k)

a

—in+2(hr)jnea(kr)]. (3.10

B. The transverse Debye field

o koo Ze?Mp gkt 2n+1
E7(r) ~ Bolo—— —

ANpe T novn(n+1)

X[15(K)B1n(6,¢) +11(K)CTL(6,¢)],
(3.12

wherer ,=e?/(4meymd?) is the classical electron radius and

we have defined(k)=1/(k,k), for i=1,2,3. This is the

central result of this work, to be compared with the
asymptotic form for the Mie fieldentirely transverse

kr—oe ek 2n+1

EM(r) — iEg— 2, ——
( ° 2 vn(n+1)

kr &
X[aNBS,(0,¢)+bC(6,4)].
(3.13

The Mie coefficients are very well known from the littera-
ture. For a dielectric sphera) and b} are given by
[13]

M = Mn(MX) Y (X) = g (X) Yin(MX)
" Mg (MX)En(X) — En(X) ER(MX)

and

M_ lﬂn(mx) (/frlw(x) - m%(x) l/l,ﬁ(l’ﬂX)
T (M) EN(X) —mE(x) EL(mX)

whereyr,(t) =tj,(t), &,(t)=th,(t), m=ny/n, n; being the
(complex refractive index of the particle and that of the
medium, andx=2mna/\.

Now that we have the current term decomposed in the 5 hesides the longitudinal fiefdiscussed belowthe
vectorsM, N andL, as stated by E¢3.3), we can go back  pepye field and the Mie field have the same form, the quan-

to (2.7) and perform the integrdly, Go(r,r') - J+(r')dV’ us-

titative differences lying on the coefficients of the expansion.
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C. The longitudinal Debye field TeNeg,
Contrary to the Mie field, the Debye field has a longitu- o= TiNege (3.18
dinal component while propagating in the plasma. From
(2.4), (3.3, and(3.8) one obtains an important parameter to be discussed in Sec. IV. Several
23 . comments are now in order. This field is proportional 16°1/
EP(r)=—— >, inj dhh?13(h,K)Lern(h,r). and thus it is negligible in comparison to the asymptotic
mEge(w)w [ 0 transverse field. As can be seen from expresboh?), the

(3.14  longitudinal field is not strictly longitudinal, in the sense that

, ) it is not all parallel tor. This is a simple consequence of the
The calculations here proceed differently from the transvers?act that the vector harmonit also is not parallel ta

case. We cannot use directly the asymptotic expression for - « 3
the Bessel functiofji,(hr) included inLga(h,r), because it However, thed and ¢ components depend on kk)” and do

is under integration. Instead, we can splif, in a product MOt imply any correction to the expression for the transverse
of Bessel function {,,) and vector spherical harmonicBY., field. Fro_m(3.17) it is cIear_ that the longitudinal field is not
andBy,,,, see Appendix Aand change the order of integra- propagating as an outgoing wave but rather as a kind of
tion between théx integral and the integral df}, ending up evanescent field.

with an expression involving integrals of the type
Fzdhhi,_1(hp)in(hr) =(m/2)p" Yr ™1 [if 0<p<r], IV. PHYSICAL PROPERTIES OF THE DEBYE-MIE FIELD

= m/4r? [if 0<p=r]and=0 [if p>r>0](p is the variable A. Simplified expressions and limiting cases
of integration ofl ). The field EE is then obtained for arbi- ) . N o )
trary r: With generality the j(k) coefficient can be written as
Ze?Mo |“(k)=iQ 1+i —Jadrre‘”"DjZ(kr)
EP(N)=iEolo——5— 2 i”{[\/n(n+ 1)BS,(6,¢) ! 2k? <" 2k2\3/) Jo me
K"\pe (4.1)
n
—(n+ 1)P§n(6,¢)]frdpe*P“Djn,l(kp)p— where we have used the resulfdxxe 2¥j,(bx)j,(cX)
a rn+2 =(1/20¢)Q,[(a%+ b2+ c?)/(2bc)] and Q,(x) is the Leg-
endre polynomial of the second kind. It can be easily seen
—[Vn(n+1)B,(6,¢)+nP5 (6,6)] that if a<\p,\ (where is the wavelength of the electro-

. (-1 magnetic field in the plasmaand for any relation between
xf dpe ?0j . 1(kp) ] (3.15 Ap andi one can neglect the second term of the right-hand

r pn Tl side of(4.1) comparatively to the first one. This is the most
common case, and it is equivalent to considering the dust as
In the limit r—o the first integral becomes dominant. Ap- a point particle. The scattered Debye fi€bl11) is then sim-

proximating it by [ one obtains plified to
krp < jnt1 1 1 ek 2n+1
My alp__ 0 n—1n_ 1)1 E°(ry=-EyfpZ— —— —— > ——
E['(r)~EoZ€ ey 2 2" Hn D T(N=5Eolo o2 T % D
(Khp)" 1
X——————[n(n+1)BS (4, X 1+ —|C%.(6,
(1+k27\2D)n[ ( ) 1n( d’) Qn 2(k)\D)2 ln( ¢)
—(n+1)PL(6,9)]. (3.16

1
+Rn(1+ m) ‘fn(ﬁ,ﬁb)], (4.2
Due to the strong dependence om"t7? the first term @ P
=1) is dominant. Thus, the asymptotic longitudinal field can

be approximated by the first term of the series, which can pdith Ri(x) =[(n_+ l)_Qf‘*l(X)“.L nQn+1_(x)]/(2n+ 1).
written as In the Rayleigh limit we will considen>\p,a and any

relation betweera and\p, that is, it is indifferent to have

Ap>a or <a. In this limit we can use in(4.1) the
kro 2 asymptotic expressions for large argument£gqfand small
(kr)® 1+ k2)\% arguments ofj,,. It turns out that the dominant term in the
series(3.12) is that of Bf;. After some manipulations with
the complete and incomplete functions one obtains

Z
EP(r)~Eqg 1t 5ea/)\D

- 1, 1.
X | rsinfcos¢p— §0cos¢ cosf+ §¢Sin¢ ,

< '
kApe<1 te e|kr

(3.17 E2(r) —— EoroZ 155+ (COS$ cos06—sing o),

with 4.3
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wheree=a/\p and § was already introduced i(8.18. The  son why in the following we present only the results accom-
factor € appears in the expression because no magnitude r@anied by the minimum additional information.

lation was assumed betweanand \p. If a=\p it repre- Because the total magnetic field satisfies®
sents a considerable enhancem@ntactor of 4 in the cross ., (k/uow)rx E® (kr—=), the time averaged Poynting
SeCtiOf) relatively to the Raylelgh pOIntllke case, in which vector in the asymptotic region i&):Re(EtOtX HtOt*)/z

Ap>a=0. Physically it just means that & increases with _ /- S IEtot 2 readi is i -

: L =\ ege(w)l wor|E®Y?/2. The irradiance is simply={(|S)
Ap constant, then the Debye cloud expands, having a higheg,j e defind; (1,) as the irradiance for the case when the
cross section. The factof is due to the factomp/Ape,  incident field is parallel(perpendicular to the scattering
which appears because the electrons have a distribution agrane (defined by the incident and scattered wave vegiors
cording to the potentiabcexp(=r/\p), but their dynamics pBecause we have chosen the incident field to be polarized in

leads tokpe. In other words, the dust is screened by elec-he x direction || is computed fromE©Y(X pol, 8, 4=0) and
trons and ions, but only the electrons do the scattering. I|‘L is computed fromE©Y(Y pol, 8, =0)=E" (X pol, 8, ¢

T.=T, and Z<0, for example, the charge of the grain is = —7/2).

screened by’/2 ions and(by the absence pZ/2 electrons. The total cross section is calculated from the total scat-
In general, the number of electrons missing in the Debyggreq powerP, o'®=P/1y= [ A(S)-dA/l,, wherel, is the
sphere isZ/(1+ 6). In the rest of this work we will refer to jncigent irradiance. IfA is a spherical surface in the
ZI/(1+ 6) as the number of shielding electrons in the Debyeasymptotic regiong = f AIdA/l,, which, by use of the or-

sphere, having in mind that this number can be negative fo{hogonal relations between tiBzand C vectors gives
a negative dust. IT.>T; and the grain density is lowso

that Neqi=Neqe) O represents a severe suppression of the o= M+ P+ gMP, (4.5
Debye field. As expected, the amplitude of the scattered
wave does not depend énwhich is consistent with the fact With
that the incident wave does not “see” the inner structure of
the Debye cloud; th&/(1+ 6) electrons on it scatter coher-
ently. The DS cross section becomes constant, contrary to
the Mie case, where the long wavelength regime leads to a
1/\* behavior. However, the angular dependence is exactlgnd oMP an interference cross section given by
the same in both cases.

Finally, concerning the small wavelength limit, no simple WD . Kro
expression can be derived. The discussion is simpler if we O =—4mZe"'o

27
oMP=—5 X (@n+1(Ja PP+ o) P (46

2
consider the point particle cagé.2). If k\p—=, then the (Khpe)
argument of the Legendre functions tends to 1, where it has *
a logarithmic singularity. Thus, an increasing number of xImj >, (2n+ DIS(k)aM +15(k)bM7 .
terms is needed to compute the Debye fieldas— o, and n=1
no simple closed form can be derived. However, the prefac- 4.7

tor 1/(kApe)? goes to zero faster than the Legendre functions . N _ .
tend to infinity. Thus, we expect that the small wavelengthRecalling thaiZ can be positive or negative according to the

limit the Debye field has the form dust charge sign, we see that the interference term introduces
a separation between the total cross sections for oppositely
1 ikr charged dust grains. Therefore, even if the model for the
ER(r)=ZEgrZ—— —F(k\p,6,¢), (4.4  potential around the grain leads to the same form of the
2 (K\pe)® T perturbation density, as is the present case, the interference

term “raises the degeneracy,” introducing a difference be-

where F(k\p ,0,¢) is a (vectop function with a weak de- tween the total cross sections. Obviously, this is due to the
pendence otk\p. This form of the Debye field is verified fact that the sign of the perturbation density changes if the
numerically, the plot of the Debye cross section being weligrain charge changes, leading to a phase difference iof
fitted by a 144 curve in the small wavelength regime. By the Debye field. This interference term can only be signifi-
opposition with the Mie process, where the scattering crosgant if the Debye and Mie fields are of the same order of
section tends to a constant value?® in the small wave- magnitude. Typically, this happens @<\, that is, in the
length limit, the Debye field vanishes very fast because th&ayleigh-Mie regime, where the dominant coefficieras,
electrons in the Debye cloud are scattering the incident rawhose imaginary part is negative. Thus, we conclude that in
diation out of phase relative to each other. the cases of interest the interference is constructive for a
positive grain and destructive for a negative one.

In the Rayleigh limit for the Debye procesa$\,a)
one obtains the Debye cross section directly fr@gh3):
The total fieldE®'=EP+EM is the sum of the Debye and

B. Total cross section

Mie fields. It can be written in the form d3.13, with the o 5 +€\?
substitutiona® —a®=a"+aP, bM—b®'=bM+bP, with oP(k\p<1)=Z%0, T35 4.9

ay ,bP = —ikroZ exp@Np)l3 (k)/\p. Therefore, the for-
mal results of the Mie theory concerning cross sections cawhereo,=_8r3/3 is the Thomsom cross section. This is in
be used almost directly, with minor changes. This is the reaagreement with the fact that the electrons in the Debye
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cloud are scattering coherently. However, as previously redominant Mie term, which iag" . Thus, the sum to perform
marked, the correction factofr(1+e)/(1+ 8)]? must be s now restricted to Debye terms. Using the re&ifft ,(2n
taken into account because it can represent a strong suppres41)Q, (1+ €)=1/e (which can be derived from the well
sion of the coherent effect. Note thaiis at least 1, so that if known general expressiorE’_,(2n+1)Qn(t)Pn(2) = (t

€ is negligible (as in most casgsit introduces at least a —7)~1 yalid for complexz inside an ellipse passing through

suppression factor of 4. t, and having foci at the points 1 [24]) and the explicit
form of the Mie coefficien@)', given above, one obtains
C. Differential cross section. A possible way to determine finally

the factors Z/(1+ é6) and Ap

The angular variation of the scattered field can be ad- 5

equately described by the radiant intensit?/dQ) (units d_(T 9= 0) = - 614 4 12 z \?
Wsr 1), defined byP=/, (dP/dQ)dQ=dP/dQ=R?, an (0=0= 5 | &Kol 155
whereR is the radius of the spherical surfageconsidered
above, or equivalently by the differential cross sectidin 2_q 7
mensions msr '), defined from o=/, (do/dQ)dQ M= £ 32
. . : +2R o a’ks. (4.12
=do/dQ=R?l/1,. Thus, the differential cross section can m?+2) "1+6

be also be split into the sum of its parallel and perpendicular

components, which are It is important to note that if the particle properties &nd
m) are known, therdo/dQ(6=0) depends only on the pa-
Jo 1 2 rameterZ/(1+ 68), the number of electrons in the Debye
(E) == , (4.9 sphere.
|k For 6= a similar deduction can be made using
lim,_ ,Pi(cosh)/sind=(—)"n(n+1)/2 and =7_,(2n

> [@%p,(6)+blg,(6)]

n

P 1 5 +1)(—)"Qn(1+€)=1/(2+€), with the result
(m) = 3|2 [aTan(0)+bn(0)]] . (4.10
1
do _ _|m°- ’ 64 2 ? 1
with  pa(6)=[nPL, (cosg)(n+1)—(n+1)PE y(cosOny g (0= 7= 5| &K Fro[ 1775 (1+4K2N2 )2
sind and qn(0)=(2n+1)Pﬁ(cos€)/n(n+1)sin0. Plots of
these quantities are shown in Sec. IV E 5 3.2
For most of the experimental situations the measure of the +2R m—1 r A a’k . (413

total cross section is not possible, but only the differential m2+2) °1+6 1+4k?\3

cross section in some allowed/accessed directions. Naturally,

the case¥=0 (forward scatteringand 6= 7 (backscatter- Therefore, in the backscattering case there is an extra depen-
ing) are of particular interest, not only for experimental pur-dency on the parameter+14k2)\2D relative to the forward
poses, but also because the infinite series of the Debye fieltattering case and the information on the paramgtét

can be summed exactly, leading to a simple expression, in+ §) is mixed with the information on the plasma parameter
dependent of the relation betwegnand\p . \p -

For =0 the associated Legendre functions satisfy These results suggest a way to determine the parameters
lim,_.oP%(cos6)/sin =—n(n+1)/2, which implies that the Z/(1+ ) and\p. The curveslo/dQ 4_o (k) have a mini-
parallel and perpedicular differential cross sections are equahum. Taking the derivative d#.12 and(4.13 in order tok
and and equating the result to zero one obtains two expressions

for Z/(1+ 6). The forward case gives

do 1|« ?
—0N)— tot tot
40 (0=0= 2| 2, @@ty . (410 z |l
1+6 Re(u)rg '

(4.19

We are interested in describing the wavelength range where

the Debye field is of the same order of magnitude or greatewhere kg, is the value ofk where the differential cross
than the Mie field. This happens when the Mie field is al-section for6=0 attains the minimum and we have defined
ready in the Rayleigh regime, and so we retain only theu=(m?—1)/(m?+2). The backscattering case gives

Z  Rew)ad(1+4K2 i\3) 2
LY | 1 1+16Lkimmx%<1+4kimmx%), (4.19
1+o 8rohd [Re(u)]? ™ *



PRE 62 MIE AND DEBYE SCATTERING IN DUSTY PLASMAS 1197

wherek,. min is the value ofk where the differential cross F
section ford=  attains its minimum. The forward scattering 10° E
case allows the determination 8f(1+ ) if one knows the E
properties of the spheres alone, whereas the backscattering

case needs the previous knowledge of the Debye length. 10" E
However, if both possibilities are experimentally available, [
we can equate the right-hand sides#fl4) and(4.15), and 10° k
it turns out thatvp is the solution of the polynomial equation & F
2
10° E
lul? 2 )
1+4 mko,min+kw,min Ap o' L
ki,miﬂl 4k2 23_0 41 100- 4 e 4 b bl 4 e
— 5 (LH4AKE ninhp)°=0. (4.16 1 10 100 1000
omin Apm)

As discussed in the introduction and in Sec. VI, this method_ G- 1. Cross sections for Mie and Debye scatteringrmal-
. . L 13 ized to the Thomson cross sectjan a typical environment of a
applies to a collection of grains if, firsty ““>\p and, sec-

d th ) di L plasma processing chambehg=1 um, a=10 nm, and|Z|
ond, the grains are monodisperse in size. =100) as a function of the incident wavelength. The interference

term oy p is also represented and leads to a difference between
positively and negatively charged grains in an intermediate regime
of A~10 um. Due to this interferencer® is almost one order of

Finally, we define the degree of polarization of the scat-magnitude smaller tham,Z2. The Rayleigh limit for Debye scat-
tered field for a totally depolarized incident field. As usual, ittering is constant.
is given byP= (1, —1)/(1, +1)).

The curveP(6) is the same for all incident wavelengths
in the Rayleigh regime for the MS. This is due to the fact
that our treatment is single scattering, which means that th
scattered field by the Debye cloud preserves the polarizatio
curve P(6) of an individual electron. It is easy to see that if
two electrons, 1 and 2, have individual degrees of polariza
tion p=(l =)/ i+1), i=1,2 (at a given angled),
then |, 1 (E, 1 +E, 5)* and I (Ej+Ejp)? still satisfy p

D. Degree of polarization

It is clear that in the wavelength range 8—4f the in-
Eerference cross sectianP introduces a shift between the

tal cross section curves for the positive and negative dusts.
n the case of a negative dust, this effect almost spoils com-
pletely the scattering enhancement effect in the wdf-
range. Furthermore, in this case a minimum is observed,
whereas in the positive charge case the curve'®is mono-

=(I.7—Iy7)/(I.1+17) for the same angle. The reasoning tonic. This happens precisely in the transition region where

can be extended to an arbitrary number of electrons. ThglletﬁndMlge(;)ye_pr(icessr?s are f()eoquj\cl)ly |m.[t3c_)rt{ahnt.5l:ﬁbr8
polarization curve for the Raleigh-Mie field is the same as*™ € h tgmlna etsw ereas ir40 um itis the Debye
that for an electron and so the previous argument also appliélIocess at dominates.

to a sphere and cloud of electrons. As a final conclusion, the Th'”k'f‘g of an environment closer to that of a dusty crys-
tal experimenf10], the value ofa should be taken as ap-

polarization curve in the Born approximation is expected to ;
be always the same for all incident wavelengths, and equal tBrommater 1pm, the Debye length as-100 um, and the

P(6)=(1-coL0)/(1+coh). This is confirmed numeri- charge maybe as high as®6r even 16. The transition
cally region would be shifted towards the millimeter wavelength

range becauseMxa®\ "4, but the Rayleigh limit for the
Debye cross section would rise t010°,10°c,

In some conditions the interference term is negligible.

In all of the plots discussed below it is assumed that This can be seen in Fig. 2, where we assumed a dust in a
=1 and the complex refractive index of the particlenis typical space plasma=1 um, \p=1 m, andZ|=1000. In
=2+i. this case the transition region is given kby-0.1 m, and the

MS cross section is entirely given by the firdRayleigh
1. Cross sections term. On the contrary, for the DS we are still in the region

In Fig. 1 we present a plot of the total cross section for a2 <Ap and a large number of small terms is required to
charged spherical particulate immersed in a typical plasm&ompute the cross section. Therefore, becarfS8 is the-

processing chamber environmeftt2]. The radius of the —Sum of the cross terms of the typf' by andby'ay , only the

grain isa=10 nm, the Debye length was assumed to bdirst term will contribute(becausea}'>bY ,a) b}, i=2),
Ap=1 pm and the charge of the grain [€|=100. The and not much, becausg§ andb? are small and of the same
curves represent the variation with the incident waveleigth order of magnitude of the nem?, b,? hundred terms.

of the quantitiesr' for a positive and for a negative charge, Therefore, in this case the splitting introduced &¥° is

o™, oP and oMP. These calculations follow from expres- negligible and the total cross section for positive and nega-
sions(4.5), (4.6) and (4.7), with the DS coefficients calcu- tive grains is identical. Finally, note that the Debye cross

lated neglecting the integrdf in (4.1). section falls to zero a&—0 slightly slower than the Mie

E. Some numerical examples
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7

[ 1
10° F 0 m=2+i
; . 3=1
10* F M=2+i 10 a=1um
; o=1 A.=7 mm
[ D
103 3 a=1um 0105 |Z|=1000
A =1m /\t_)\
102 - |Z|=1000 a 104
o E O
® S
10'F =~ 10°
10° F 2
] 10
8=n, Z>0
1010.3 10-2 10_1 100 101 102 101 - 1 P |||n|.2 H i ||||||.1 N PR
10 10 10
r(m) A(m)

FIG. 2. Cross sectiongrormalized to the Thomson cross sec-  FIG. 4. Differential cross sections fér=0 (forward scattering
tion) for Mie and Debye scattering in a typical space plasma (  and =7 (backscattering for Z>0 andZ<0. The values of the
=1 m,a=1 um, and|Z|=1000), as a function of the wavelength. parameters used here correspond roughly to the ionosphgre:
The interference ternr™P is not important in this case. =7 mm,a=1 um, and|Z|=1000. The minimums do not coincide.

) Again, the difference betweedo/d() for positive and negative
cross section does as—«. We know that the latter follows grains is very large in the transition region.

a 1A* dependence, which means thet is falling as\*~ ¢,

with @ a small number, in accordance with.4). parallel irradiance and flat for the perpendicular irradiance.
When the incident wavelength decreases the curves show a
2. Differential cross sections strong tendency to peak in the forward direction.

In Fig. 3 we show the angular dependence of the scatter- In Fig. 4 we show the variation afo/d(} (normalized by

ing. The blots show di lized by it ; o) with N for =0 (forward scatteringand 6= 7 (back-
Ing. The plots showandl, normalized Dy ItS maximum scattering. These curves are calculated from the exact re-
values (at 6=0) for a=1um, Ap=1m (typical space

) - sults (4.12 and (4.13. The values used ar@=1 um, \p
plasma, Z=—1000 and for three different values of the in- _ _ :
cident wavelengthA =1, 10 and 100 m. The calculations 7 mm, and|Z|=1000. Thus, they correspond basically to

i heric pl [ .
follow from (4.9) and (4.10). an ionospheric plasma environment

In the long wavelength limit the plots reproduce the shapc;,vhIn both cases the upper curve represents the zase,

. . . ich has a minimum in the backscattering case, but not in
of the Raleigh-Mie curves, that is, inverse bell shaped for th‘:‘fhe forward scattering. Note that the minimum is attained at

different wavelength ranges in each case. In the backscatter-

104 A=100m| 4 4 ing it is around 20 mm, almost in the regiam> A, whereas
in the forward scattering the minimum occurs at 4.8 mm
0.8 08 <\p. The reason for this is that the DS is much stronger in
- the forward than in the backward direction and therefore the
06 065\ wavelength scale on which its magnitude is comparable to
8" - that of MS is smaller in the forward than for the backward
H 2 scattering. Application of expression#.14), (4.15 and
=, 047 -042 (4.16 with komin=27/(4.8x107%) m™t and K, min
— =2m/(2x10°%) m~! allow us to determin€/(1+¢) and
0.2 4 0.2 Ap -
0.0 - A=1m L 0.0 3. Degree of polarization
| I T U R T ST 1 1 U U I N N |

0 30 B0 90 1201501800 30 60 90 120150180 Figure 5 shows the polarization degr@et(ll—ln)/(h
8(deg) o(deg) +1)), calculated through the expressidds9) and(4.10. As
previously discussed, it is expected that in the Born approxi-
FIG. 3. Radiant intensity normalized by the maximum value atmation the polarization curve remains unchanged for all val-

9=0. The physical parameters are the same as in the precedigfS Of the incident wavelength. Numerically, this is ob-
figure. The left(right) curves are relative to incident radiation po- S€rved in this figure, wit=1 um, A\p=1 m, Z= —1000
larized parallel(perpendicularto the scattering planédefined in- ~ and for three values of, 1, 10, and 100 m. As the value of
cident and scattered wave vectorSor large values ok the curves \ decreases more terms in the ser{d®) and (4.10 are
are equal to the Rayleigh-Mie case and Xor A, the scattering is needed to get convergence. Nevertheledends always to
strongly forward peaked. the curve expected.
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We takeN=ng, the density of grains, which is related to
1.0 |- M=2+i the electron and ion average densities thro(@h), e,=X
K 5=1 and e(k,0,¢) is simply given by (4.2 multiplied by
08 L a=1um _Eglrexp(—ikr). To dgterminq‘ (k,6=0) we use the method.
) A =1m in Sec. IllA and arrive again at a sum previously used in
S T |zD|_—1ooo Sec. IV C,37_o(2n+1)Qn(1+€)=1/e. The final result is
S 06 B f(k,6=0)-X=—r,Z/(1+ ) and the contribution of the De-
S N bye “globules” to the dielectric constant is
T u
E 0.4 1 (Upe an 1 5.3
© = =1- —. .
3 A=1,10 and 100m @)=L 2 Noge 145 (5.3
0.2
This result was derived from the optical theorem by using
the scattering amplitude of transverse electromagnetic waves
0.0 in a plasma. Therefore(w) in (5.3) must be identified with
1 L 1 L 1 A 1 L 1 L 1 A 1 =

0 30 60 90 120 150 180 the transverse pareT(k,w), of the dielectric tensoe. T_he
q dispersion relation for the transverse electromagnetic wave

6(degrees) will be obtained by adding the bulk contributionw?/w? to

+ and then by writing the usual conditiorer(w)

FIG. 5. Polarization degree of the scattered radiation from &€ .
g (kc/w)?. This leads to

depolarized incident field. Plasma parameters identical to those of
Fig. 2. The curves are identical for all incident wavelengths, show-

ing the Rayleigh pattern.
14 Zng 1
Nege 1+6

w?=k?c?+ wge . (5.9

V. A CORRECTION TO THE DISPERSION RELATION

FOR A ELECTROMAGNETIC WAVE PROPAGATING IN
A PLASMA Therefore, the “globulization” of the dusty plasma intro-
_ _ _duces a correction in the electron plasma frequency. As ex-

In this section we show that the presence of dusts in &ected, it tends to zero ag— 0. Simple estimates show that
plasma introduces a change in the usual dispersion equatiofhis correction can be of the order of 10%. For example, in a
w2:.w§e+ c’k? (where we neglected consistently the ion dy- qusty plasma devicg29], the following values are possible:
namics. Z~10% Neqe~10° cm 2 andnyg~10* cm™2. If 5~1, then
f(klfa \(/;/)ebdefine the (normalized scattering amplitude the correction factor ir5.4) is approximately~0.1.

1 Uy Yy

VI. CONCLUSIONS
ikr

b We have derived the expression for the field scattered by
E (r)=EOTf(k,9,¢>), (5.9

the Debye cloud around a charged dust in a plasma, given by
(3.12. Using the formalism of the Dyadic Green functions
then it is a well known result of electrodynami@y,28 that ~we have found the expansion of the Debye field in a set of
the dielectric constant of the medium is related to the scatspherical vector wave functions, in analogy with the Mie
tering amp“tude in the forward direction by field. Thus, the Debye-Mie field can be expressed in a com-
mon basis, allowing for a unified treatment. MS dominates at
small wavelengths and DS dominates at large wavelengths.
In most of the cases there is a minimum in the transition
&* -f(k,6=0), (5.2 region between these two regimes, where MS and DS are of
the same order of magnitude. Three main results were de-
R rived from this global view(1) The total cross sectiof®.5)
whereN is the density of scatterers aieg is the unit vector has an interference teriid.7) between the Mie and Debye
in the direction of the incident field. This expression is validfields, originating a total cross section largemalley than
under the conditions of validity of single scattering. the sum of Debye and Mie individual cross sections, for a
Let us determine what is the influence of the Debyepositive (negative grain. This effect can be important in the
spheres in the dielectric constant. Because the DS is due teansition region(2) The Debye model for the potential al-
the fluctuation in the electron density around the dust, it idJows us to sum exactly the Debye series for forward and
the influence of this heterogeneity that we are going to quanbackward scattering, leading to simple expressions for the
tify, and not that of the whole bulk of electrons. The latter differential cross section in these directiong.12 and
contributes to the dielectric constant aswf,e/wz, a contri-  (4.13. From these expressions a method for determining the
bution that we will add to that of the Debye spheres. Itvalues ofZ/(1+ ) and\p was devised, based on the iden-
should be noted that the contribution of the bulk electrongification of the minimum of the curveda/dQ(6=0) and
can be obtained fron.2) on usingN=nc, and the scat- do/dQ(6=m). It expressed by4.14, (4.15, and(4.16. (3)
tering amplitude for Thomsom scattering. The relation between the dielectric constant and the forward

e(w)=1+ 2
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scattering amplitude allows us to derive a correction for theb>\ . If this condition is not fulfilled the Debye spheres
dispersion relation for an electromagnetic wave propagatingverlap and our picture of an isolated dressed grain is
in a dusty plasma,5.4). This correction is due to the spoiled. The dust grains become correlated and the total ir-
“globulization” of the plasma and can go up to 10% in radiance is much more difficult to calculate.
realistic plasma conditions. The application of the proposed method for the determi-
_The results fo_r the Debye cross section agree essentiallyation of the parametei®/(1+ &) and \p is possible for a
with those of Binghamet al. [19] in the long and small  cqjiection of uncorrelated dust grains, because in this case
wavelength limits, the only cases where a simple analyticajpq relationg4.12 and(4.13 remain valid for the total scat-
comparison is possible. Let us recall that the result of thesgy ey field from all the scatterers. The case of a collection of
authors in the high frequency limitf> wpe) is correlated dust grains demands further investigation. How-
2w, ever, the present results suggest obvious interest in the ex-
op=24maoln—|Z¢"?, (6.1)  ploration of the correlated case.

“p Finally, it is important to mention that very recently as-
ttronomic observations have shown that the role of dust emit-
ting in the submillimeter and microwave bands is much more
important than previously thoughi8l]. Presently it is be-
lieved that dust emits more radiation in this wavelength

apart from a numerical factor. The small wavelength limit isfange than qll the .VlSIble stars. Debye scat.terlng can be sig-
in agreement witt(4.4). nificant in this region of the electromagnetic spectrum, and

It should be stressed that our approach is applicable to ar;)l,wus its study very important for future research in this field.

model for the potential around the grain. We have chosen the
simplest model and yet realistic enough, the standard Debye
potential. More complicated models such as those used by = APPENDIX: THE SPHERICAL VECTOR WAVE
Bighamet al. [19] or by Whippleet al. [5] can be used; it FUNCTIONS

just a matter of substituting3.2) by the appropriate current

term, as long as the linearization of the Maxwell equations In this appendix a brief summary of the most 'mpor_‘a”F
~ . formulas related to the set of spherical vector harmonics is
can be made, that is,;<ngq.. Of course, analytical results

. . . resented. Our notation is consistent with Morse and Fesch-
are no longer available, but the numerical calculations can b h d Tai
made. ach[24] and Tai[26].

One more point in favor of the generality of this approach
is that the results for the Debye field are applicable even if
the dust grain is not spherical, because the Debye cloud still
remains approximately spherical. On the contrary, the Mie 1d
field depends on the geometry of the particle. Lomn(k,r):Pgn(0,¢)E ajn(kr)nL Vyn(n+1)

The fact that the dust is treated as a charged sphere raises
the question of the influence of the charge in the Mie field. 1
This problem has already been addressed by Bohren and XB%n(é’,(b)ﬁjn(kr)- (A1)
Hunt[30], who have shown that in the case of a dielectric or
imperfectly conducting charged sphere there are two contri-
butions for MS, one coming from the bulk dielectric function M ymn(K,1) = n(n+1)CZ (6, ) jn(Kr), (A2)
and the other from surface dielectric functions, associated
with the surface currents induced by the incident field. The
latter can be included in the Mie theory through a phenom- 1.
enological surface conductivity, although with limited results ~ Nomn(k,/)=n(n+1)Pr(6,¢)—jn(kr)+yn(n+1)
and usefulness, mainly because of the difficulties in deter-
mining this parameter. Besides, it is expected that this sur- ” 1 _
face contribution give only a small correction to the Mie Xan(a"ﬁ)ﬁa[” n(kn)], (A3)
field. Therefore, in our joint description of Mie and Debye
fields we have retained only the dominant bulk contribution
for MS. , , where the vector spherical harmonics are

The Debye sphere acts like a particle, due to coherent
scattering of the electrons inside it. Therefore, the Debye

Jn—m+1_
% n+1 Xn+ 1( 6! d))

Wherezﬁff is an effective charge, depending on the inciden
wave numbek. Their asymptotic expressions aZ§ﬁ~Z for
A>\p andZE"~Z(MAp)? for N<\p.

Therefore, the long wavelength limit agrees wi#h8)

1. Explicit expressions

scattering should be regarded as scattering by a macropar- _ Vyn(n+1)
ticle, although it is really the result of scattering by fluctua- Brnn(0,¢)= (2n+1)sin6
tions in a continuous mediuifwe have assumed the validity

of the fluid model conditions If there is a collection of NURT
randomly distributed dusts, the Born approximation gives in- n n-1(0,4)
coherent scattering: the total irradiance is the sum of indi-

vidual irradiances. The dusts can be considered as uncorre- g m(2n+1) iX™( d))]
lated if the distance between the gralmss larger tham\p, n(n+1) ~"7 '

(A4)
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yn(n+1) ~ln—m+1__ 0.2
Coel D)= i Dysing| Y Tnrr Soralfd) zﬁamrammfﬁnn/&k—k'), (A7)
m
T Xnml(avd’)}
whereCp,,=(2— dp)(2n+1)(n—m)!/n(n+1)(n+m)!,
. m(2n+1)
mlxn(ﬂ,d)) : (A5)
X BZ(6,4)B7, ,(6,4)dQ
Prn(0,0)=X7(6,¢), (A6) f (6,¢)B 0 (0,0)
whereX['(6, $) =e™?Py(cos6). =f C%n(a,@C;I,n,(ﬁ,(ﬁ)dQ

2. Orthogonality relations o
:f P%n(al(ﬁ)Pm/n’(e!(ﬁ)dQ

. ! ' ! 3
n(n+1)f L omn(K,r) <L grmrnr (K", r)dr dmlen (n+m)! -
T 2n+1 (n—m)! oo’ Omm’ Onn’ »

(A8)
= f Mu.mn(k,r) . MU/m/n/(k',r)dBr

:J Nomn(K,r) - Ny (K1) d3r with €,=1 if m=0 and=2 if m#0.
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